
www.manaraa.com

Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Computer Science: Faculty Publications and 
Other Works Faculty Publications 

9-2007 

A Classroom Outsourcing Experience for Software Engineering A Classroom Outsourcing Experience for Software Engineering 

Learning Learning 

William L. Honig 
Loyola University Chicago, whonig@luc.edu 

Tejasvini Prasad 
University of Wisconsin 

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Honig, W. L. & Prasad, T. (2007). A classroom outsourcing experience for software engineering learning.. 
In J. Hughes, D. R. Peiris & P. T. Tymann (eds.), ITiCSE (p./pp. 181-185), : ACM. ISBN: 978-1-59593-610-3 
doi=10.1145/1268784.1268838 

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has 
been accepted for inclusion in Computer Science: Faculty Publications and Other Works by an authorized 
administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
© ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal 
use. Not for redistribution. The definitive version was published in ITiCSE '07, Proceedings of the 12th annual 
SIGCSE conference on Innovation and technology in computer science education, {Volume 39 Issue 3, September 
2007} http://doi.acm.org/10.1145/1268784.1268838 

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


www.manaraa.com

A Classroom Outsourcing Experience for Software
Engineering Learning

William L. Honig
Loyola University Chicago

Department of Computer Science
Chicago, Illinois 60611 USA

+1.312.915.7988

whonig@luc.edu

Tejasvini Prasad
University of Wisconsin

Dept. of Mathematics, Statistics, and Computer Science
Menomonie, Wisconsin 54571 USA

+1.510.299.2106

teju.prasad@gmail.com

ABSTRACT
Outsourcing of software development is a key part of
globalization, oft misunderstood by computer science students,
and possibly a cause of declining enrollments in the field. The
authors developed and implemented an outsourcing experience for
students in an advanced software engineering course. Student
teams at two universities developed game playing programs and
outsourced key parts of their systems to the other university.
Results show students improved their understanding of
outsourcing, developed better appreciation for the importance of
software engineering techniques, and created ad hoc
communication protocols between teams. The paper concludes
with recommendations for expanding the approach used to other
universities to create a more inclusive computer science and
software engineering teaching environment.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – life cycle,
programming teams, software configuration management; K.3.2
[Computers and Education]: Computer and Information Science
Education – curriculum, information systems education; K.6.1
[Management of Computing and Information Systems]: People
and Project Management – life cycle, management techniques
staffing.

General Terms
Management, Measurement, Experimentation.

Keywords
Outsourcing, software engineering, global software engineering,
team communication, software development life cycle, computer
science enrollment.

1. INTRODUCTION
This paper reports the results of an experimental undergraduate
course to introduce outsourcing of software development into the
software engineering curriculum. Section 2 motivates such
experiments from the impact outsourcing is having on the field.
The course structure, including having teams at two universities
both do outsourcing for each other, is described in section 3. The
course changed the student’s perceptions about the benefits and
evils of outsourcing as well as successfully teaching key software
engineering concepts (section 4). Section 5 recommends further
work to include outsourcing experiences for students as a way to
enhance their understanding and readiness for careers in the
global software development field.

2. RELEVANCE OF OUTSOURCING
Outsourcing is widespread in many industries and fields today,
including systems and software development. Many global
organizations perform software outsourcing internally between
different divisions and large firms exist to do outsourcing of
software development for others. Hence, it seems essential for
computer science education to look for ways to introduce learning
about outsourcing into the curriculum.

The authors believe that the concern about outsourcing
eliminating software jobs (or reducing the compensation
potential) has contributed to a decline in computer science
enrollments in universities (there are likely other causes as well).
One of the students enrolled in the course described in this paper
summarized a common opinion about outsourcing in a semester
start survey: “I don’t like outsourcing because of the adverse
effect it has on my future job security. Outsourcing will work best
when both programmers have equal wages (U.S. current wages)”.
Similar concerns seem very common among today’s students.

The author's work in creating the course concept was not
motivated by a fixed belief that outsourcing is "good" or "bad", or
has a net positive or negative impact on jobs. Instead, the goal
was helping students to better understand outsourcing, techniques
for dealing with outsourcing, and the limitations of outsourcing.

Despite the attention given to outsourcing there is not an existing
body of knowledge about how to incorporate it into the academic
curriculum. Some have reported course experiences with
distributed or global software engineering [7]; however, these
courses were not structured as outsourcing.

In general, the goal of introducing experience with outsourcing
into computer science education can be seen as part of the trend to



www.manaraa.com

bring academic preparation more in line with the needs of real
world software practitioners [2] and to refocus education on the
necessary skills for success in contemporary computing careers
[1].

The popular press of the field has begun to focus on the
perception that colleges and universities are not appropriately
preparing future employees for computing jobs [3], including the
demands of working with outsourcing. Adding outsourcing
experiences into education can counter this perception.

3. CLASS STRUCTURE
3.1 Course Content
Both authors had previously taught an advanced software
engineering course. Such a course is taken by undergraduates
after they have considerable programming experience and
possibly some small team project development experience. The
typical student is a junior or senior computer science major.

The software engineering syllabi at both universities were similar
- covering project planning, requirements, estimation, design,
implementation, testing, and documentation. The overall course
goal is to provide students a first hand experience using the
techniques of software engineering in a large, semester long, team
project.

3.2 Outsource Experience
Desiring to incorporate outsourcing into the course, the authors
needed to decide how the two separate classes would be linked
together with outsourcing. It seemed undesirable to have one
university’s class be the project lead and the other the site of the
outsourcing – students would undoubtedly perceive that one role
was more important than the other.

Instead, the authors wished to have each team on an equal footing
– seeing the other location as equally important as their own.
Hence, the selected organization structure was for teams at both
universities to have the full experience: each team would run their
own development and use a team at the other university as an
outsourcing center.

The teams at each university were 4 to 5 undergraduate students;
teams were formed by the authors based on a semester start survey
of student past experience both inside and outside the class room.
All teams programmed using Java and a total of 40 students were
in the classes.

3.3 Inter-Campus Structure
The goal was to have the students experience a true, real world
outsourcing experience – one similar to two companies or
organizations working together in the global economy. In the real
world, outsourcing does not take place between two groups that
are completely unknown to each other.

Hence, it was necessary, in the limited time of the academic
semester, to create a relationship between the two locations. First,
the authors took still photographs of the individual students and
showed them to the students at the other locations. Students were
given online access to these photos to help them get to know the
members of their paired remote team.

Second, voice-only teleconferences were used for brief sessions
for the two locations to interact. These interactions were not
technical content but mainly social.

As the third and final mechanism established by the faculty, each
team identified a primary contact point for the other team to use in
team communications. The primary contact was responsible for
coordinating communications with the other team

Beyond this structure, the students were given freedom to define
and use other forms of communication. In class sessions, the
students were introduced to basic interpersonal communication
concepts (e.g. synchronous and asynchronous communication,
meetings with agendas, web discussion boards). See section 4.3
for a description of the inter-team communication mechanisms
that developed as the teams worked.

3.4 System Development Projects
The authors gave the teams two choices for projects, both game
programs. The teams were to develop a complete two person game
for either chess or go. The ability to play “against the computer”
was required. Considerable freedom was given on user interface
selection and the mechanism for computer move selection.

Chess was the more common choice by the teams. Faculty paired
teams with a team at the other university doing the same game.

Each team prepared (and was graded based upon) the deliverables
shown in Table 1. The authors provided templates for each
deliverable and the class room sessions included extensive
coverage of the related software engineering topics.

Table 1. Team deliverables

Deliverable Description Typical
Size

Project
Management

Plan

Project schedule, project
description, people resources and

roles assigned, risk analysis
5 pages

Requirement
Analysis

Document

Use case model and natural
language system requirements 6 pages

System Design
Document

Object orient system design using
UML and a general system

description
3 pages

Outsourcing
Agreement

“Contract” for deliverables and
schedule between two teams 2 pages

Test Plan Numbered set of planned tests
with pre and post conditions 5 pages

User Manual Installation and user guide 4 pages

3.5 Creating the Outsourcing Agreement
Except for the Outsourcing Agreement the other team project
deliverables are not described in this paper (and are similar to
typical software engineering courses). The Outsourcing
Agreement was added to give structure to the workflow between
the teams at the two locations.

The teams were required to outsource one-third of their system to
the other location. “One-third” was defined to mean
approximately one-third of the classes and methods in the design.



www.manaraa.com

This size requirement was used to ensure that a major dependency
was created between the two teams (so that a team could not just
throw away the work of the other team and do it by themselves).

The team receiving the work was called the “remote team” – its
assignment was done for the “main team”. Key items in the
Outsourcing Agreement were:

 Date for main team to send System Design Document to
remote team and indicate outsourced items

 Date for remote team to return agreed upon software to
main team

 Description of testing to be done by both main and
remote teams (documented in standard Test Plan
document)

 Acceptance criteria for outsourced code

Teams were required to keep all documents under configuration
control and to ensure that the same version of the System Design
Document and Test Plan were available to both teams at all times.

The teams were encouraged to view the Outsourcing Agreement
as a negotiated document between both teams – not as a
“demand” from the main team to the remote team. Prior to the
formal submission to the instructors, both teams were required to
approve the document.

4. FINDINGS AND LEARNING
OUTCOMES
The courses at both universities were conducted as an experiment
to determine academic effectiveness, the impact on software
engineering learning, and the changes in student perception about
outsourcing. Results indicate that the course was effective and
students generally enjoyed the unusual experience. This section
presents selected results from the course including both student
self evaluations and the author’s findings.

4.1 Changed Perceptions of Outsourcing
At the start of the course, all the student participants had existing
impressions about outsourcing in general and most expressed an
opinion on these four points in a semester start survey (only a
small number replied “no opinion”:

 Outsourcing is primarily a way for an organization to
save money by developing software using cheaper
employees

 Outsourcing is likely to cause fewer jobs for software
engineers in the USA

 Outsourcing is a way for an organization to draw on
skills that are needed but not present in the organization

 Outsourcing is a good way to speed up software
development and get projects done on schedule

The same statements were evaluated by the students again at the
conclusion of the course, both times using the same scale.

Interesting changes in the student’s perception were seen on the
first and third item. At the semester start, fully 92% of the
students agreed or strongly agreed with the statement that

outsourcing was primarily a way to save money during software
development (Figure 1).

2:strongly
disagree

0%

3:disagree
8%

1:no
opinion

0%

5:strongly
agree
23%

4:agree
69%

Figure 1. Outsourcing primarily to save money (course start)

During the project implementations the teams had considerable
experiences with the reality of outsourcing. They learned more
about the costs of outsourcing, particularly the need to have very
complete design specifications and the time needed to
communicate with the remote team.

All the teams reached agreements on their Outsourcing Agreement
(see section 3.5) with limited difficulties. Typically the teams
communicated openly with each other and came to an
understanding quickly on what they would do for each other.

However, these agreements, possibly hastened by the deadline for
turning in the deliverable for grading, were not completely
effective in defining the work. The teams typically had to engage
in considerable ad hoc communication about exactly what was to
be done.

The authors encouraged the remote teams to return preliminary
versions of their software to the main team; this step allowed the
main team to check on the remote team’s understanding of the
design and requirements for the outsourced software. Typically,
considerable mismatches were found and corrective actions taken.
In some cases the main team decided to change their software
rather than asking the remove team to correct their work. Often
these mismatches were due to imprecision in the System Design
Document (likely contributing to greater understanding of the
importance of precise Object Oriented Design – see Section 4.2).

1:no
opinion

25%

5:strongly
agree
17%

4:agree
50%

2:strongly
disagree

0%

3:disagree
8%

Figure 2. Outsourcing primarily to save money (course end)



www.manaraa.com

As a result of the amount of work all the teams did to ensure a
successful product from the remote team, opinions of the cost
savings from outsourcing changed by the end of the semester.
Only two thirds of the students still saw outsourcing being
motivated by cost with a quarter of the students no longer being
able to express an opinion on the topic (Figure 2).

These results may be influenced by the team’s lack of experience
with outsourcing. It is possible that with more practice they
would again see outsourcing as a way to reduce costs.

However, one of the other items is unlikely to change with further
experience – one that is a positive change in their perceived value
of outsourcing. At the semester start, the students were about
equally divided on the use of outsourcing as a way to draw on
skills from outside the organization: 45% agreed or strongly
agreed while 46% disagreed or strongly disagreed (see Figure 3).

Figure 3. Outsourcing to add skills (course start)

During the team’s work on projects, they became aware of the
different skills on the team they were paired with. Since the
course did not teach or mandate specific programming
technologies, they were allowed to draw upon things learned in
past classes. By including multiple universities there was a wider
set of skills available for the team to draw upon. As a result the
semester end survey showed all the students now either agreed or
strongly agreed that outsourcing was valuable to add skills to an
organization (Figure 4).

5:strongly
agree
42%

3:disagree
0%

2:strongly
disagree

0%

1:no
opinion

0%

4:agree
58%

Figure 4. Outsourcing to add skills (course end)

4.2 Software Engineering Outcomes
Although outsourcing was an added emphasis in the course, the
formal purpose of the course at both universities was to teach
undergraduates software engineering. It was important that the
added emphasis on outsourcing did not overly detract from that
purpose.

Both student self evaluations and assessments by faculty were
conducted on the learning outcomes from the course. In general,
the course was successful in meeting its intended purpose.
Further, the addition of the outsourcing experience seemed to
increase the student’s motivation in the course (which had
sometimes been viewed as a difficult and somewhat boring topic
by past students).

The semester start survey asked students to rate their personal
knowledge levels in a number of software engineering technical
areas. At the end of the semester, the same areas were again
evaluated by the students as part of the formal class evaluation
process.

Table 2 summarizes the student self evaluation and the changes
during the class. In the self evaluation students rated their
knowledge level using the scale 1: none, 2: a little, 3: medium, 4:
a lot, 5: near complete.

Table 2. Software engineering self assessment

Knowledge Area Average self
rating - Start

Average self
rating - End

Software Development Life
Cycle and Software Process

in General
1.9 4.0

Project Management,
Scheduling, and Project

Planning
3.0 4.0

Software Size and Cost
Estimation 2.0 2.5

Software Requirements
Creation and Validation 2.6 3.8

Object Oriented Design,
including UML 2.5 4.5

Software Testing 3.2 3.8

Configuration Management
and Change Control 1.7 4.1

As noted in section 3.1 above, students in the class have
considerable software development experience from prior class
work; many of the students have also worked in software
development positions. Although it is a generalization, many feel
they are already great software developers and have little to learn
from a course some of them view as “management things”.

The students have experience using object oriented design and
UML from earlier courses although it tends to be limited to small
examples. Hence, the large improvement in Object Oriented
Design knowledge is likely due to their use of the tools in a larger

5:strongly
agree
15%

4:agree
31%

3:disagree
31%

2:strongly
disagree

15%

1:no opinion
8%



www.manaraa.com

project and the fact that they better understand how critical it is to
effective team implementation. The use of the System Design
Document as a key part of the outsourcing contract increased the
importance and utility of a complete design.

Configuration Management is not typically addressed in other
courses, although some students encounter it in jobs. In general,
starting knowledge of the topic was very low. Again, the need to
communicate with the remote team likely heightened the need for
careful configuration management and ensured that students
learned to apply the key concepts.

Detailed discussion of the other software engineering knowledge
areas and learning outcomes from the course are beyond the scope
of this paper. However, the overall results were viewed as
excellent by the authors and others at their universities.

4.3 Discoveries in Communications
As detailed in section 3.3, each team had a primary contact for
communications with their paired team at the other university.
Initially the team contacts exchanged email addresses and used
email as their primary interactions.

Other studies have detailed the critical importance of
communication for successful outsourcing [6], and the value of
maintaining a good relationship and trust between the parties [8].
Hence, it is not surprising that the students quickly realized the
value of good communications and begin to innovate using the
typical tools of their generation.

In addition to using email for their deliverables and to exchange
drafts, the student teams also communicated between universities
in the following ways:

 Voice communications using both ad hoc and scheduled
phone calls – these calls were usually two party calls
and took advantage of mobile phone tariffs that did not
charge extra for long distance calls.

 Text messaging using mobile phones – often used for
confirmations that emails had been seen and to confirm
when new information would be ready for the paired
team.

 Instant messaging – teams added their counterparts both
on the remote team as well as their main team to their
IM “friends” and used their tele-presence in ways
similar to both of the above.

Thus, the students adapted and used the same communications
tools they used regularly in their personal lives. These additional
tools were very useful in establishing and maintaining the positive
working relationships between the teams.

5. CONCLUSIONS AND NEXT STEPS
Today, students (and the general public) have many perceptions
about outsourcing, both in general and for software development.
The course concept described here was created to bring the topic
more fully into the academic teaching environment by providing
students an outsourcing experience in the classroom.

The course, although taught only once to date, was successful
both in engaging students in thoughtful exploration of outsourcing
as well as teaching more traditional parts of software engineering.
However, to be a broader and more inclusive experience the
course concept can be expanded in these ways:

 Include teams from widely different time zones (both
universities in the paper were in the same time zone) –
the issues of “time shifting” put further strains on
communication mechanisms but are common in real
world outsourcing.

 Include teams from different countries and with
different cultural backgrounds – other work (e.g. [5],
[4]) has shown the importance of culture and its impact
on both design and communications; a full exposure to
outsourcing needs to include these complexities.

Both the above ideas can best be tested by cooperation in courses
and outsourcing between universities more widely distributed
across the globe. By doing so the field will continue to engage
students and teach them how to deal with, and thrive in, the future
global software community.

6. REFERENCES
[1] Denning, P. Recentering computer science. Comm. ACM,

48,11 (Nov. 2005), 15-19.

[2] Fernandez, J, Garcia, M., Camacho, D., Evans, A. Software
engineering industry experience: the key to success. Journal
of Computing Sciences in Colleges , 21,4 (April 2006), 230-
236.

[3] Hoffman, T. Preparing generation Z. ComputerWorld
(August 25, 2003)

[4] Krishna, S., Sahay, S., and Walsham, G. Managing cross-
cultural issues in global outsourcing. Comm. ACM, 47, 4
(April 2004), 62-66.

[5] MacGregor, E., Hsieh, Y., and Kruchten, P. Cultural patterns
in software process mishaps: incidents in global projects.
International Conference on Software Engineering, (St.
Louis, MO, USA 2005), 1-5.

[6] Oza, N., Hall, T., Rainer, A., and Grey, S. Critical factors in
software outsourcing: a pilot study. Proceedings of the 2004
ACM workshop on interdisciplinary software engineering
research (Newport Beach, CA, USA, 2004), 67-41.

[7] Petkovic, D., Thompson, G., and Todtenhoefer, R. Teaching
practical software engineering and global software
engineering: evaluation and comparison. Proceedings of the
11 th annual SIGCSE conference on innovation and
technology in computer science education, (Balogna, Italy
2006), 294-298.

[8] Taylor, H. Critical risks in outsourced IT projects: the
intractable and the unforeseen. Comm. ACM, 49,11 (Nov.
2006), 75-79.


	A Classroom Outsourcing Experience for Software Engineering Learning
	Recommended Citation

	Microsoft Word - HonigPrasadITiCSEfinal.doc

